
TESt AUTOMATION
FUNDAMENTALS

How to automate
software test processes

ABOUT US

Validation Engineer
with background in the

Automation area.

jmartinez@sqs.es

Javier MARTÍnez
Testing specialist, with
years of experience in

this area.

cmunoz@sqs.es

Cesar MuÑoz

TABLE OF CONTENTS

Organization of
the automation
process

03

Test Cases
SELECTION

02

What is test
automation

Introduction

01

How to select the
test cases to
automate

Versions, CI,
incidence
management,
documentation

TABLE OF CONTENTS

automation
LEVELs

04
AUTOMATION
PROCESS
STAGES

05

Setup environment,
data organization,
execution, check
results…

TOOLS

06

Main automation
tools: Selenium,
UFT, JUnit, Sonar

Unit tests,
integration tests,
system tests…

01
Introduction

What is test automation

introduction
Some test cases are re-executed a
lot of times.

Other test cases require a lot of
time to complete.

Conclusion: testing could require
too much time.

Solution: test automation.

introduction

Software test automation is a
software testing technique that
uses automated testing software
tools to create and execute a test
case suite

introduction

This involves the test
configuration/programming,
running tests automatically,
managing test data, and analyzing
results to improve software quality.

introduction
Which is your knowledge about test
automation?

- I have done test automation

- I have studied about test
automation

- No knowledge

02
Test Cases
SELECTION

How to select the test cases to
automate

TEST CASES SELECTION

• Not all the test cases are suitable
for automation

• A realistic target could be between
30% and 50%.

• The maximum would be 70%.

TEST CASES SELECTION
• The first test cases to automate are

the repetitive tasks which demands a
lot of time.

• Do not automate test cases which
only will be executed one time.

• Compare the effort to automate with
the effort to test manually.

• The scripts usually requires updating,
so, compare also the effort to update
with the effort to test manually.

TEST CASES SELECTION
What should we automate?

• Applications with frequent updates
• Critical applications for the

business
• Complex applications
• Applications to be tested on

multiple platforms or environments

TEST CASES SELECTION
What should we automate?

• Applications with concurrent users
• Modules used by several

applications
• Applications with high costs to fix

bugs
• Test cases with special data

requirements

TEST CASES SELECTION
We have 3 test cases:
1) It will only be executed once
2) A test case which will be executed
more than 10 times
3) A functionality with elements which
changes every day
Which test cases will you automate?

A) ALL B) 1 and 3
C) 2 D) None

03
Organization of the
automation process

Versions, CI, incidence
management, documentation

Version control
Relate the stored test version with
its corresponding application
version.

Define a policy to create and name
new releases:
• Nomenclature
• Regularity
• Communication flow

Version control
There are software to implement
the version control. Allow
accessing to the different versions.

Distinguished version control tools
are:
- Git
- Subversion (SVN, TortoiseSVN)
- CVS

contINUoUS
INTEGRATION
Also known as CI.

The developers send their changes
frequently to a central repository.
So, the changes from several
developers are integrated in one
project.

contINUoUS
INTEGRATION
The automation will be applied to
these compilations and can be
performed with Selenium or
Appium for instance.

Distinguished CI tools are Jenkins,
CruiseControl.

Incidence
management
When the automated test detects a
failure, first, it has to be described:

- Which point of the test case
failed?

- When did it occur?
- Environment?
- Criticality?

Incidence
management
Then, the incidence can be
assigned to the group or person
who has to treat it.

The incidences have a status:
- New
- Assigned
- Resolved, etc.

Incidence
management
Well known tools which implement
incidence management Jira, BMC
Remedy ITSM.

Quality Center (ALM) also
implements defect management.

Specific tool: Bugzilla

Incidence
management
These are 2 detected fails:
1) When the button “New” is
pressed, the screen only shows the
message “Deleted the last register”.
2) The field “Address” is shown with
very small characters.
What “Criticality” will you select
(“High”, “Medium”, or “Low”)?
A) “High” for 1, “Low” for 2
B) “High” for 1, “Medium” for 2
C) “Low” for 1, “High” for 2

CODE DOCUMENTATION
A documentation strategy should
be implemented.

This strategy will indicate how to
add comments to the code.

The test specifications can be
included in these comments.

CODE DOCUMENTATION
Different applications generate
documentation from the code
comments.

Tools for automated
documentation:

- GhostDoc(C, VB, JavaScript…)
- Doxygen (C, Java, PHP, Python…)
- Pandoc

04
automation LEVELs

Unit tests, integration tests,
system tests…

AUTOMATION LEVELs

Unit tests

Integration Test

Application Test
(Validation)

System Test

White box testing

black box testing

Unit tests
Lowest level of testing during software

development.
Most precise.
Testing functions in isolation. It’s

behaviour against it expected
behaviour.

Coding process
A program that exercises your

application’s components

integration tests

Phase where individual software
modules are combined and tested as
a group.

integration tests
strategies

• Bottom up – The lower-level modules
are the first integrated. The driver is
simulated in order to make the
modules work

• Top down – The higher-level modules
are the first integrated. The
submodules are mocker in order to
make the modules work.

Application tests

Process of testing the application in a
black box environment with scripts or
tools in order to identify functional
errors.

It is usually divided in:
• Frontend/ user interface testing
• Backend testing

Types of Application
tests

• Smoke and sanity Testing
• Regression Testing
• Acceptance testing
• Functional testing
• Performance testing

System tests
Level of testing that validates the
complete and fully integrated software
product.
Series of tests whose purpose is to
exercise the full computer-based system.
Some tests are similar to the application
tests but in the fully integrated software
product.

Types of System
tests

• Load Testing
• Regression Testing
• Recovery testing
• Migration testing
• Functional Testing

AUTOMATION LEVELs
We have the classes “Teacher” and
“Subject”. And we have coded a test
case which checks if the field
“Hours” of a subject is returned
correctly.

Which kind of test is this?

A) Unit test
B) Integration test
C) System test
D) Acceptance test

05
AUTOMATION PROCESS

STAGES
Setup environment, data

organization, execution, check
results…

Project DEFINITION
Information about the Project and
its requirements is gathered:

• Budget
• Scope
• Whom contact
• Deliverables
• Automation process

estimation
• Prototype

TOOL Selection

When selecting the automation tool,
we have to consider firstly:

• Application environment
• Application interfaces
• Provider (support, trustworthy)
• Programming language
• Budget

We can make a requirements matrix

TEST SYSTEM DESIGN
• Design test environment
• Select and define test cases
• Define how to control the test

versions
• Define data and test cases

backups
• Define defects managements

Environment
creation
Create the system architecture:

• Hardware elements (physical
or virtual servers…)

• Software elements (database,
applications…)

• Dependencies between the
different elements

Test data creation
Different possibilities:

• Create new (false) data for the
test

• Copy data from production
• Use applications to generate

data
• Extract from database
• Use the previously existing

data from the environment

Create automations

Some applications could require additional
elements to allow its automation. For instance,
virtual terminal devices for mobile applications.

Create automations
Different possibilities depending on the
environment, application, and automation tool:

• Program the test case
• Capture the test case when executing

manually
• Configure a functionality of the tool we will

use to test

Create automations
Usually, the automated tests will require
parameters, which will allow us to introduce
different data or configurations when
executing.

Other kind of parameters could require to catch
its value in real time when executing. These are
called “correlations”.

Create automations
Finally, the automated test should check its
results. If not checked, our automated test
could be running without execution errors, but
returning wrong results, and we wouldn’t be
aware.

“Assertions” are a mechanism to compare a
result which we select from the execution, with
an expected value indicated by us.

Test EXECUtion

Before the execution, some
elements could require to be
started. For instance, if we are
testing against a local database,
it should be open and running to
be accessible.

Test EXECUtion
We will execute the automations
created.

The execution results have to be
compared with the expected
results. If the comparison hasn’t
been automated, we’ll have to do
the comparison by our own
means.

TEST EXECUTION

Every test case execution has to
be registered, including
configuration/data used, and
result (pass or fail).

REPORTS
Some tools, after the execution,
have the option to create a report
with the results.

Anyway, a report with the fails
should be delivered to the
development team in order to fix
them.

EXIT CRITERIA

Once the desired coverage level
has been reached, and executed
with the desired success rate, the
testing process can be finished.

PROJECT CLOSURE
The files containing the automations
created (scripts) have to be stored.

Some documents should also be
stored:
• Where and when were fixed the

errors
• Pending issues
• Documents with the lessons learned
• Test reports

TEST CASES SELECTION
If we have these exit criteria:
- Coverage level 70%
- Error rate: 10%
And we have these 2 projects, with 2 test
cases in every project, with status:
1) 1 test case automated, with error rate 0%
2) 2 test cases automated, with error rates
8% and 9%
Which projects have reached the exit
criteria?
A) None B) Project 1
C) Project 2 D) Both

06
toolS

Main automation tools: Selenium,
UFT, JUnit, Sonar

Selenium
Maybe the most known automation
tool.

It is a free automation tools suite:
- Selenium WebDriver
- Selenium IDE
- Selenium Grid

Selenium IDE
It allows scripts recording.

The script is shown as a table.
Every step is a file with 3 columns:

- Command: action to perform
- Target: web element to apply the

action
- Value: optional value to send to

the element

Selenium GRID

To scale by distributing and running
tests on several machines and
manage multiple environments
from a central point, making it easy
to run the tests against a vast
combination of browsers/OS.

Selenium webdriver
It is an API. It allows the creation of
robust tests.

Automated tests based on browser.

Different programming languages
supported: Java, Phyton…

Different browsers supported:
Chrome, Firefox…

UFT
HP sold it to Microfocus.

It can automate different Windows
applications, not only web
applications.

Its scripts must be programmed on
Visual Basic Script.

Easy integration with ALM.

junit
It is an open source testing
framework for Java applications.

It allows not only unit tests, but also
integration tests.

The test class should include “Test”
in the class name.

junit
Three main kind of annotations for
the test methods:

@Before: executed before a new
test case is going to be executed

@Test: test case and its validations

@After: executed after a test case
has been executed

junit

The test methods will include
“assertions” once the test case has
been completed. This is, to check a
condition compliance to get the
result of the test: pass or fail.

SonarQUBE
SonarQube is an open-source
product for code quality static
analysis to detect:

- Bugs
- Duplicated code
- Not accessible code
- Design problems
- Security vulnerabilities
- Codification standards

SonarQUBE
It provides free analysis for fifteen
programming languages:

- Java - XML - JavaScript
- C# - Scala - Kotlin
- CSS - Go - Python
- Flex - PHP - VB.NET
- HTML - Ruby - TypeScript

More languages available, but not
for free

SILK TEST
Automated functional and
regression tests for web, mobile,
and business software
applications.

It works with different technologies:
Mobile (iOS, Android); .NET
(WinForms, WPF); Java (Swing,
SWT); DOM; IE; Firefox; Chrome;
Edge; Safari; SAP Windows GUI.

SILK TEST
Silk test offers 4 products:
- Silk Test Workbench allows to

test automation tests at a visual
level, using VB.Net as scripting
language.

- Silk Test Classic uses the
domain specific language
“4Test” to automate command
sequences. Its an object
programming language.

SILK TEST
- Silk4J was created to automate

in Eclipse using Java as
scripting language.

- Silk4Net was created to
automate in Visual Studio using
VB or C# as scripting language.

- Currently Silk4J and Silk4Net
has been fused into “UFT
Developer”

Jmeter
Apache JMeter is usually used for
performance testing. But this
requires a previous test case
automation. In fact, it is sometimes
used simply for automated
functional testing, without load
generating.

Jmeter

JMeter is a Java desktop
application (but, when testing
performance it’s recommended to
launch the tests from the command
line).

Jmeter
JMeter saves every request as an
object, which can be configurated.

Also, additional components can be
added to the script or to the
requests, like:
- Graphics
- Cookies management
- Assertions
- Result reports

LoadRunner
Like JMeter, it is a performance
testing tool, which requires to
automate the test cases previously
(LoadRunner Virtual user generator).

The generated scripts runs also on
the monitoring tool BSM.

It works with different protocols
and sources.

LoadRunner
When capturing test cases, the
source can be a browser or a client
desktop application.

Depending on the selected protocol,
the scripts will test the GUI (for
instance the TruClient protocol), or
the network communications (for
instance the HTTP, HTML or Web
services protocols)

LoadRunner
Some protocols:
- HTTP/HTML: reproduces the

request from the client
application.

- Web services: SOA requests
- MAPI: for Microsoft Exchange
- RDP: connection to a remote

machine
- TruClient: reproduces the user

actions on a web interface (GUI)

LoadRunner
HTTP and HTML protocols are the
most used. LoadRunner Virtual
User Generator (VUGen) captures
the navigation done by the user,
and saves it a as C or Java script.

C is the most used language for the
LoadRunner scripts.

LoadRunner

We have to automate an API with
LoadRunner Virtual User Generator.
Which protocol will you use?

A) HTTP
B) MAPI
C) Web services
D) RDP

