
The future of models in testing
Safely crash in virtual space

2021-10-21

Dirk CoppelmansBryan Bakker



Bryan Bakker

▪ Test Architect

▪ Tutor of several test related courses

▪ Domains: medical systems, 

professional security systems, 

semicon-industry, electron 

microscopy, material handling

▪ Specialties: test automation, 

integration testing, design for 

testability, reliability testing

2© Sioux 2021 | Public

▪ Test Architect

▪ Test strategy, infrastructure & 

automation

▪ Consumer products, medical devices 

& industrial machinery

▪ Quote: “There is always one more 

bug”

Dirk Coppelmans



3© Sioux 2021 | Public



4© Sioux 2021 | Public



The future of models in testing

1. Evolution of software testing

2. Models in testing

3. Future?

5© Sioux 2021 | Public



Evolution of software testing

6© Sioux 2021 | Public



7© Sioux 2021 | Public

Evolution of software testing



8© Sioux 2021 | Public

Evolution of software testing

Manual



9© Sioux 2021 | Public

Evolution of software testing

Manual Automated

!



10© Sioux 2021 | Public

Evolution of software testing

Manual Automated

!

Keyword



11© Sioux 2021 | Public

Evolution of software testing

Manual Automated

!

Keyword

?



Evolution of software testing –
Compare to SW development
▪ Increase in use of formal models 

▪Originates from research & universities

▪ No longer limited to safety and reliability critical environments, like

automotive and aviation

▪ Applied to manage complexity

12© Sioux 2021 | Public

Type Tools

System design • ASD / Dezyne (Verum)

• mCRL2 (verification engine for ASD/Dezyne)

• Cocotec

Interface • Pact

• ComMA



Model Driven Development (MDD) - Model

13© Sioux 2021 | Public

Model:

- Precise

- Complete

- Correct



Model:

- Precise

- Complete

- Correct

Formal model 

and verification

Generate 

formal model

Design 

errors

MDD – Model verification

14© Sioux 2021 | Public



MDD – Code generation

15© Sioux 2021 | Public

Model:

- Precise

- Complete

- Correct

Formal model 

and verification

Source code:

- Java

- MISCRA C

- C++

- C#

Generate 

formal model

Design 

errors

Generate defect 

free source code 

from verified model

Guaranteed 

equivalence



MDD – Experiences

▪Quality of generated code very high

▪ Especially reliability and stability

▪ Functionality can still be wrong (also wrong in model)

▪ No more programming errors like deadlocks, livelocks, starvation, race-conditions

▪ Integration with other parts still important

References:

▪ R. van Beusekom, J.F. Groote, P. Hoogendijk, R. Howe, W. Wesselink, R. Wieringa, T.A.C. Willemse. Formalising the Dezyne Modelling Language in mCRL2 

▪ www.verum.com

16© Sioux 2021 | Public

http://www.verum.com/


Models in testing

17© Sioux 2021 | Public



Interface modeling – Contract testing

▪ Consumer driven contracts

▪ In micro-service architecture

▪ Useful for interface definition

▪ True power: interface evolution

▪ Tool support e.g.: Pact Broker, Pactflow, Spring Cloud Contract, 
Schemathesis

References:
▪ https://pact.io/
▪ https://pactflow.io/
▪ https://spring.io/projects/spring-cloud-contract
▪ https://github.com/schemathesis/schemathesis

18© Sioux 2021 | Public

https://pact.io/
https://pactflow.io/
https://spring.io/projects/spring-cloud-contract
https://github.com/schemathesis/schemathesis


Contract

▪ Consumer: A client that wants to receive some data (for example, a web front 

end, or a message receiving endpoint).

▪ Provider: A service or server that provides the data (for example, an API on a 

server that provides the data the client needs, or the service that sends 

messages).

▪ A contract between a consumer and provider is called a pact. Contract are 

consumer driven. Each pact is a collection of interactions. Each interaction 

describes:

▪ An expected request - describing what the consumer is expected to send to the provider

▪ a minimal expected response - describing the parts of the response the consumer wants the 

provider to return.

19© Sioux 2021 | Public

https://pact.io/

https://pact.io/


Consumer side testing

1. Using the Pact DSL, the expected request and response are registered with the mock service.

2. The consumer test code fires a real request to a mock provider (created by the Pact 

framework).

3. The mock provider compares the actual request with the expected request, and emits the 

expected response if the comparison is successful.

4. The consumer test code confirms that the response was correctly understood

20© Sioux 2021 | Public

https://pact.io/

https://pact.io/


Provider side testing

▪ In provider verification, each request is sent to the provider, and the actual response it generates 

is compared with the minimal expected response described in the consumer test.

▪ Provider verification passes if each request generates a response that contains at least the data 

described in the minimal expected response.

21© Sioux 2021 | Public

https://pact.io/

https://pact.io/


Combination

If we pair the test and verification process for each interaction, the 

contract between the consumer and provider is fully tested without 

having to spin up the services together.

22© Sioux 2021 | Public

https://pact.io/

https://pact.io/


ComMA
Component Modeling and Analysis

▪ Advanced interface modeling

▪ Developed by Philips Healthcare + TNO-ESI (now open source)

▪Model consists of: 

▪ Signature

▪ Behavior

▪ Time & Data constraints

References:

▪ https://projects.eclipse.org/projects/technology.comma

▪ https://esi.nl/research/output/tools/comma

23© Sioux 2021 | Public

▪ Generated:
▪ Visualization

▪ Documentation

▪ Interface code

▪ Runtime Monitoring and interface conformance

▪ Test cases 

https://projects.eclipse.org/projects/technology.comma
https://esi.nl/research/output/tools/comma


Modeling

▪MDD Design models are by far flawless

▪ Often only complex+critical parts of the system modeled

▪ Interface models are

▪ Rigorous

▪ Valuable for interface evolution

▪ Limited to interfaces

▪ By modeling behavior, new test possibilities arise

24© Sioux 2021 | Public



25© Sioux 2021 | Public

Evolution of software testing

Manual Automated

!

Keyword

?



26© Sioux 2021 | Public

Evolution of software testing

Manual Automated

!

Keyword Model based



MBT Definition

Model based testing is 

automated test generation and execution 

based on an abstract 

behavior model

27© Sioux 2021 | Public



Developing a behavior model

1. Derive the behavior model from the requirements

2. Construct a behavior model based on collected field data 

(process mining) 

28© Sioux 2021 | Public



Derive from the
requirements

29© Sioux 2021 | Public

Requirements

TestDevelopment



Derive from the
requirements

30© Sioux 2021 | Public

Requirements

TestDevelopment

Behavioral model

Extract Review

Improve



Derive from the
requirements

31© Sioux 2021 | Public

Requirements

TestDevelopment

Behavioral model

Extract Review

Improve

Product

Develop



Derive from the
requirements

32© Sioux 2021 | Public

Requirements

TestDevelopment

Behavioral model

Extract Review

Improve

Product

Develop



Test execution

Generate testsBuild product



Derive from the
requirements

33© Sioux 2021 | Public

Requirements

TestDevelopment

Behavioral model

Extract Review

Improve

Product

Develop



Test execution

Generate testsBuild product

Fix product

F
ix

 r
e
q
u
ir
e
m

e
n
ts

Fix model



The next best thing –
Developing a behavior model

1. Derive the behavior model from the requirements

2. Construct a behavior model based on collected field data 

(process mining) 

34© Sioux 2021 | Public



Process mining

35© Sioux 2021 | Public



Process mining

36© Sioux 2021 | Public

Development

Product

Develop

Requirements

Test



Process mining

37© Sioux 2021 | Public

Development

Product

Develop

Requirements

Test

Log

Behavioral model

Data
Mine

Extract



Process mining

38© Sioux 2021 | Public

Development

Product

Develop

Requirements

Test

Log

Behavioral model

Data
Mine

Extract

Review

Improve



Process mining

39© Sioux 2021 | Public

Development

Product

Develop

Requirements

Test

Log

Behavioral model

Data
Mine

Extract

Review

Improve



Test execution

Generate testsBuild product



40© Sioux 2021 | Public



41© Sioux 2021 | Public



Challenges of MBT - Complexity

▪ Stakeholders have different expectations of MBT

▪ Shorter leadtime vs. higher quality

▪Modeling is a specialized skill

▪ Some testers find coding hard… modeling can be even harder

▪ Not every (part of a) system is suited for modeling

▪ There is a lack of mature tools

▪ Mostly GUI tools... Avoid automated testing via GUI

▪ Most tools do not support non-determinism / uncertainty

References:

▪ https://www.axini.com/en/products/model-based-testing/

▪ https://github.com/TorXakis/TorXakis

42© Sioux 2021 | Public

Founded in ioco-testing theory

https://www.axini.com/en/products/model-based-testing/
https://github.com/TorXakis/TorXakis


Challenges of MBT – State space explosion

▪ Expectations vs reality

▪ Abstraction level of models

Unclear scope of models leads to wrong abstraction level of models:

▪ too abstract : model has limited to no added value

▪ too detailed : high costs, state space explosion

▪ MBT applied on too many areas → high costs, disappointing benefit

▪ Apply only for high-risk areas

▪ Performance, reliability & security

43© Sioux 2021 | Public



Challenges of MBT – State space explosion
Dealing with state space explosion

Scope Focus on components / subsystems 

instead of the entire system

a) simple models for different test purposes

b) based on risk analysis

Abstraction Focus on behavior, instead of design

a) model the behavior instead of the design

b) limit number of data values (use S, M, L iso range 0-1000)

Reference:

▪ Groote, Kouters, Osaiweran. Specification guidelines to avoid the state space explosion problem

44© Sioux 2021 | Public



Challenges of MBT – State space explosion
Dealing with state space explosion

▪model the behavior instead of the design

Reference:
▪ Jan Tretmans – Radboud University Nijmegen – Model Based Testing

45© Sioux 2021 | Public



Challenges of MBT – State space explosion
Different models for different purposes

46© Sioux 2021 | Public



Challenges of MBT – State space explosion
Different models for different purposes

47© Sioux 2021 | Public





48© Sioux 2021 | Public

Challenges of MBT – State space explosion
Different models for different purposes



Digital Twin

▪ Digital twin represents the physical product in a digital world

▪ Design

▪ Simulation instead of prototyping (possible to try out much more)

▪ Visualize design alternatives

▪ Verification of SW inside the twin

▪ Less testing on real device

▪ Manufacturing

▪ Virtual trial runs in digital factory

▪ Identify bottlenecks upfront

▪ Operation

▪ Usage profiles of product and environment

▪ Optimize digital twin + environment by using real life data

▪ Service

▪ Predict and prevent maintenance and downtime

49© Sioux 2021 | Public

Already extensively 

use the product, upfront

In realistic environments



Future?

50© Sioux 2021 | Public



Erlkönig (Camouflaged prototype)

51© Sioux 2021 | Public

Future? – Soon, this is not needed anymore



Future? - Iterating in virtual space

▪Growing use of digital twins

▪ Fully virtual target environment

▪ Including autonomous driving

▪ Weather conditions

▪ Pedestrians / bikes

▪ Other cars

▪ Thousands of hours of driving, tested within seconds in CI/CD cycle

52© Sioux 2021 | Public

The Magic Roundabout, Swindon, England



Future? – Use of machine learning

▪Manage state space explosion

▪ Find the critical/weak SW hot-spots

▪ Improve virtual environment with 

data mining

▪Actual info from the field

▪Pedestrians / other cars not

behaving as expected

53© Sioux 2021 | Public



54

Questions?

The Magic Roundabout, Swindon, England

bryan.bakker@sioux.eu

dirk.coppelmans@sioux.eu


