Embedded testing -
From scripts to
frameworks

Introduction

Automation of hardware is sometimes challenging
Control of mechanical components is often needed
Reset button is frequently used

Use of relays is one of the solutions

Automation in automotive industry

CAN communication is one of the standards used for
communication between Electronic control units (ECUS)

Start/Stop Engine button is a main switch for running a
automotive system

The button has 4 wires: power, GND and the two CAN signals

Relay is one of solutions to replace the switch

Relay imitates the push button by making a shortage on certain
wires

There are two modes of a relay — normally opened and normally
closed

Automated control of a relay can be realized using
microcontrollers (e.g. Arduino)

Arduino turns on a relay by setting a digital pin to LOW (0 volts)

Delay function is used to wait for a certain time before changing
the state of a relay

500 ms is enough to simulate a pressed button

Afterwards, a digital pin is set to HIGH in order to release the
relay contacts

" 10T modules as designs under test

= An loT module is a small electronic device connected to wireless
networks

= |oT devices are often used in extreme conditions

= There is a variety of wireless technologies used for IoT modules,
such as 3G, 4G (LTE), 5G

= LTE is divided into different categories, such as LTE Cat 1, LTE
Cat M1, LTE Cat NB-IoT etc.

Most IoT modules do not need 4G speed and 2G is not
supported everywhere due to its deprecation

Cat 1, Cat M, and Cat NB-loT LTE modules allow highly efficient
use of the current LTE spectrum

Each cellular LPWA standard provides different features and
capabilities:

LTE Cat 1 IoT modules: offer data rates of 10Mbps uplink and
5Mbps downlink

LTE Cat M IoT modules provide uplink and downlink data rates
of approx. 375kbps

LTE Cat NB-IoT loT modules: provide uplink and downlink data
rates of approx. 50kbps

The designs under test are Quectel's EC25 and BG96

The EC25-E (which has embedded Linux) is an LTE category 4
module which delivers maximum downlink rates of 150Mbps and
uplink rates of 50Mbps under LTE

BG96 is an LTE Cat M1/Cat NB1/EGPRS module, also with
embedded Linux

Automation testing of systems based on Linux

= Linux is often used in embedded systems due to its stability,
support for multitasking, advanced features, scalability, low cost
etc.

= Python is practical for automating the tests on embedded
systems based on Linux

= Subprocess library allows us to execute the commands using
Linux terminal commands directly from Python

= One example of use is execution of scripts written in C inside the
module (similar to Arduino examples)

= Subprocess.run() and Subprocess.Popen() are suitable
functions

= The difference between those two functions is that the first one
runs the processes sequentially and the second one can run
them in parallel

= Subprocess.run() function is ideal for modems when we need to
test AT commands

Every command line for controlling a modem starts with "AT" or
"at“

Examples of some AT commands: AT+CMGS (Send SMS
message), AT+CMSS (Send SMS message from storage),
AT+CMGL (List SMS messages) and AT+CMGR (Read SMS

messages)

The starting "AT" is the prefix that informs the modem about the
start of a command line

Every AT command has its own execution time

Subprocess.Popen() function is useful when we need to run the
processes in parallel

One example of testing a IoT module using this function is when
we need to open data connection and at the same time access
to the Internet

This function is applied for testing Radio Input Layer (RIL)
applications

There are 6 applications - request_operator,
request_get_sim_status, request_setup data call,
request_radio_power, request_send_sms and
request_and_test data_connection

All of the applications (functions) should display the logs with the
acquired related parameters

Testing those functions can be automated using the subprocess
library, since they are executed in a console

Every other function except request_and_test data_connection
can and should be executed with subprocess.run() in order to
get the results sequentially

The function request_and_test _data_connection should be run
using subprocess.Popen() which allows running ping in parallel

This function is also specific because it is run in infinite loop
Timer is used to stop the data connection
After the test is finished, reports are being generated

The script opens the generated reports, analyzes them for the
key words (,E_ SUCCESS", 'E. GENERIC FAILURE', 'modem
no response' and 'Segmentation fault') and appends the results
at the bottom of the file

Some of those functions demand an user input, which blocks the
automation

Due to those functions, the script would not be fully automated if
it is left without an user interaction

Input with timeout function is developed for this purpose
After timeout, a default value is used and the test continues

Further development of this script will include the option to
repeat the tests a specified number of times, all the functions at
once or individually

Running the scripts inside the module

Bash is one of the languages which can be used to automate
the tests

AT commands can be executed via ttyUSB or smd(n) ports

Background process should be started in order for AT command
to be visible on terminal or in a file like in the example below:

cat /dev/smd10 | tee /etc/output.txt &

echo -e 'AT+CGMR\r\n' > /dev/smd10

After every AT command, sleep needs to be executed in order to
wait for a response from a modem

Response time varies from command to command — typical
value is 300 ms

When a modem needs to connect to some server using e.g.
TCP, a response time is unpredictable

If a response is not returned in a defined time, test fails

Writing a bash script is the first part of automation
The second part is uploading the script to a module

Android Debug Bridge (ADB) is used for communication with the
devices such as Quectel’s EC25 and BG96

ADB (Android Debug Bridge) is a command-line tool that allows
a communication with a device

Python subprocessing library is used to execute the ADB
commands

All the commands for manipulation with the bash script can be
executed using subprocess.run()

Example of the syntax:

subprocess.run(["adb", "push", filename, moduleDir], cwd =
filePath)

The automation process looks like this:

ADB shell is opened using subprocessing, a script is pushed via
adb push, permission is given with chmod, script is executed like
Jscript.sh and an output file is pulled to the PC with adb pull

4

|
@ i . - ¥ Somptivoceisieg gy X
e SO0RY ™
NALOS AUTORMATION It T
@ SONETOCeTInG Oy fr uhProc 03 Y t) -
OMS_teut il
module dir
isPrinted =
pushScript{filename, modeledir, filerath):
J| ess.run(5" o Hilename, moduleDir), cwd fllepath)
givePermission(moduletiripp, filedath):
o Prog Joun(", he N hwod* , 77, moduleDirApp |, owd filepath)
T a
A Tralmdngs Extirmal /83 Pythoniel Lo witomut lon byon
$ oytiun Scriptivecncdng.py |
“
1
¥ Rt It S0AD @ e S MRCHTT Spmwcd UTFE G Pytten QGulw Opwine & O

Figure 1. Uploading the bash script to the module and pulling an output file

4

= Example of the stress test:

#!/bin/bash

for ((i=0; i< 1000; i++))
do

echo "\n\n"

echo "Run number: $i"

echo "\n\n"

sudo QFirehose -f .

dmesg

adb wait-for-device devices

echo "\n\n"

echo "ADB device booted successfully"

echo "\n\n"

Done

Figure 2. Stress test example

= The idea behind this test is to detect faulty memory blocks by
repeating the flashing process many times

Test automation framework for non-
Linux systems

For testing the modules without embedded Linux, more general
approach is needed

The base of this framework is the Pytest framework

Configuration file defines which functionality will be tested, a
command which runs an image burning script and a number of
test repetitions

Decorators, which are part of a pytest framework are used to
run, repeat, skip and enable certain scripts and functionalities

Input file is mandatory for the framework

The older version of the framework used a .csv input file with the
next columns: input AT command, expected result and timeout

Functioning principle is a comparation of the output result with
the expected result

The easiest part of automating the tests for the modems is the
execution of simple AT commands which do not demand a user
Input

Examples are AT+COPS?, AT+QCFG=? And AT+CMGF=1
Exception is a command AT+COPS=?

Such commands are sent via serial communication in a
straightforward manner

There is a set of commands which demands user interaction

A special tag is put in a csvV file before such AT commands in
order for the framework to parse them differently

This tag is in a form of [DATA], which means that x1A character
has to be put at the end of the input in order to send a message

x1A represents Ctrl+Z in ASCII and serves as a termination
character

The second important tag in a csv file is [FILE] which is put
before a command for uploading a file to the module storage

There is a special algorithm for a file upload, hence, a different
tag is needed

In order to start the test, starter.py script is run along the
arguments which represent path to the test script and a serial
port

Some of the flaws of csv is its readability and a lack of possibility
to add special attributes to certain test cases, which is solved
using yaml configuration files

The new version uses yaml file for an input

Some of the properties of an input file are the AT commands,
chained property, data, termination exit etc.

Regular expressions are used for the expected result of certain
commands which have URC’s with variable size

AT commands with such URC’s have unpredictable responses
and regex is a good way to solve the matching of the results

The first property of a yaml file are the AT commands

Framework uses a while loop which reads the response from the
module after the AT command is executed

While loop is terminated once the timeout expires or a response
IS received

Execution time is saved this way

The next property used in yaml file is called chained

This property is used in the functional tests where the execution
of the latter commands depend on the former

In case of failure of opening a connection to a server, no
following commands in that chain will be executed and time of
test execution will be preserved

Many test scripts have their own configuration file
The example command for a start of an automated test:

python starter.py -p testnew/test mgtts.py
/dev/ttyUSBO

The examples of some of the test runs:

Activities) Visual

oKT1I1 1428 @ o ¢ -

mytt_sslyaml - test-automation-framework - Visual Studio Code - o ®

- Yo W0t_Me_snarmpie_hyys yam
Tost_script_M
- Tast_script M aml LA o
- Tos pE_HTTPS Yo
2_network
Test Tcoh
Tes ‘
- T T
[
- T RO
cuTLE
. TINELE Y v) \ X ¢ $
¥ festire testog* O Pethon3RNssbe ©OAD LnIBINCRO0 Spaces? UTFE ¥ Yam & 2

Figure 3. Example 1 — Running the framework

Activithes 1 Visual Stidia Code « axkTit 1829 @

tyamt M — @ usrt_cemmani = | conbigzon M
N UAMEWORR - iy o -
e 1095 & sl
)
e
[1Ls 800 N
B 2
nGrm
0G0 _shart
194 |
nc 1 »
P67 1660
067 7087 o .
ety r
TRT o] ™
15000 , 6
). B
3% ya™ A
TTRaINN
W e test
= bW 4
- - y Infe
0_MCrip Cve > matt
L t_mytt
~ . t_mtt
mt
ouTLw et
v ToecLne mt

P Festure teting® T Prthen3ATIBSNE @O0

Figure 3. Example 2 — Running the framework

VIR CU1T Speces?

UTES LF vasm|

P e

AT commands which demand a user input are a bit more
complicated

TCP is one of the features which demands a user input
Termination character must be put at the and of every message

TCP has three differrent modes — buffer mode, direct push and a
transparent mode — different termination characters are used for
them

= Development of GUI
= Report

= Integration with Jenkins

Future improvement

=Thanks for your
ATtention

